Significance of perceptually relevant image decolorization for scene classification
نویسندگان
چکیده
A color image contains luminance and chrominance components representing the intensity and color information respectively. The objective of the work presented in this paper is to show the significance of incorporating the chrominance information for the task of scene classification. An improved color-to-grayscale image conversion algorithm by effectively incorporating the chrominance information is proposed using color-to-gay structure similarity index (C2GSSIM) and singular value decomposition (SVD) to improve the perceptual quality of the converted grayscale images. The experimental result analysis based on the image quality assessment for image decolorization called C2G-SSIM and success rate (Cadik and COLOR250 datasets) shows that the proposed image decolorization technique performs better than 8 existing benchmark algorithms for image decolorization. In the second part of the paper, the effectiveness of incorporating the chrominance component in scene classification task is demonstrated using the deep belief network (DBN) based image classification system developed using dense scale invariant feature transform (SIFT) as features. The levels of chrominance information incorporated by the proposed image decolorization technique is confirmed by the improvement in the overall scene classification accuracy . Also, the overall scene classification performance is improved by the combination of models obtained using the proposed and the conventional decolorization methods.
منابع مشابه
Modified CLPSO-based fuzzy classification System: Color Image Segmentation
Fuzzy segmentation is an effective way of segmenting out objects in images containing both random noise and varying illumination. In this paper, a modified method based on the Comprehensive Learning Particle Swarm Optimization (CLPSO) is proposed for pixel classification in HSI color space by selecting a fuzzy classification system with minimum number of fuzzy rules and minimum number of incorr...
متن کاملColor scene transform between images using Rosenfeld-Kak histogram matching method
In digital color imaging, it is of interest to transform the color scene of an image to the other. Some attempts have been done in this case using, for example, lαβ color space, principal component analysis and recently histogram rescaling method. In this research, a novel method is proposed based on the Resenfeld and Kak histogram matching algorithm. It is suggested that to transform the color...
متن کاملDeep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning
Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...
متن کاملA perceptually relevant model for aliasing in the triplet stripe filter CCD image sensor
In this paper we present a signal-theoretical model of the aliasing in the triplet stripe filter CCD image selisor. In this sensor, the colour filters are placed in a repetitive pattern of three columns on the monochrome sensor. Therefore the projected scene is sampled at every three columns and aliasing can result. We use the signal-theoretical model to predict the visibility of the aliasing.
متن کاملبازیابی تعاملی تصاویر طبیعت با بهره گیری از یادگیری چند نمونه ای
Content-based image retrieval (CBIR) has received considerable research interest in the recent years. The basic problem in CBIR is the semantic gap between the high-level image semantics and the low-level image features. Region-based image retrieval and learning from user interaction through relevance feedback are two main approaches to solving this problem. Recently, the research in integra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Electronic Imaging
دوره 26 شماره
صفحات -
تاریخ انتشار 2017